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The second variation of a linear combination of energy and angular momentum is 
used t o  investigate the formal stability of circular vortices. The analysis proceeds 
entirely in terms of Lagrangian displacements to overcome problems that otherwise 
arise when one attempts to use Arnol’d’s Eulerian formalism. Specific attention is 
paid to the simplest possible model of an isolated vortex consisting of a core of 
constant vorticity surrounded by a ring of oppositely signed vorticity. We prove that 
the linear stability regime for this vortex coincides with the formal stability regime. 
The fact that there are formally stable isolated vortices could imply that there are 
provable nonlinearly stable isolated vortices. The method can be applied to more 
complicated vortices consisting of many nested rings of piecewise-constant vorticity. 
The equivalent expressions for continuous vorticity distributions are also derived. 

1. Introduction 
In this paper we use classical calculus of variations to establish criteria for formal 

and linear stability of planar circular vortices with piecewise-constant and piecewise- 
continuous vorticity in an ideal, unbounded and incompressible fluid. Linear 
stability is typically investigated by a normal-modes analysis of the linearized 
equations. With such an analysis Rayleigh’s inflexion-point theorem can be derived. 
This theorem states that a necessary condition for instability is that the vorticity 
gradient changes sign somewhere in the vortex (Drazin & Reid 1981). Thus, a 
sufficient condition for linear stability is that the vorticity gradient does not change 
sign anywhere. However, not all vortices with a vorticity gradient that changes sign 
are linearly unstable. The occurrence of an inflexion point is necessary but not 
sufficient for instability. Observations (Kloosterziel & van Heijst 1991) and several 
numerical and analytical studies indicate that for a vortex to become unstable the 
velocity profile has to fall off to zero in the outer region sufficiently rapidly. 

For instance, Flier1 (1988) has solved the normal-modes equations analytically for 
a class of isolated model vortices. These vortices consist of a core of constant 
vorticity q1 = 1 within the non-dimensional radius r = 1 plus an annulus of 
oppositely signed vorticity qz = -q  < 0 between T = 1 and r = d (see figure 2). These 
vortices all have vanishing circulation a t  T = d. For large enough d (small q) they are 
linearly stable to perturbations at all wavenumbers. Here the wavenumber is defined 
in the usual way with the angular dependence of the perturbation in polar 
coordinates taken to be proportional to exp (iZ6). Ford < 2 (q > f ) ,  Z = 2 perturbations 
are unstable; for d < (1 + l / 2 ) i ( q  > 1/42) ,  the I = 3 modes are unstable, and so on. 

t Present address : School of Ocean and Earth Science and Technology, University of Hawaii, 
Honolulu, HI 96822, USA. 
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Calculation no. q(r )  Growing wavenumber q(r+ 01)) 

(i) (1 -y) (1 +re)-; stable q a r-3 
(i) (1  - r 2 )  ( 1  +r2)-3 stable q a r-4 

(iii) (1  - - re)  ( 1  + r2)-* stable q a r-8 

TABLE 1 .  Some of the linear stability properties of families of vortices investigated by Gent & 
McWilliams (1986) by means of a finite-differences method 

(iv) (1-+r2)(exp(-+rz)) 1 = 2  q a r2 e-Y 

The steeper the velocity profile (solid line in figure Ba), which translates into a larger 
amplitude of the vorticity of the annulus relative to that of the core (solid line in 
figure 2 b ) ,  the higher is the wavenumber of the fastest growing mode, and for a 
shallow enough profile (q < i), the vortices are linearly stable. 

Carton & McWilliams (1989) have studied the stability of the one-parameter 
family of continuous vorticity profiles 

q,(r) = ( 1  - tap)  exp ( -  F )  

(with a > 0). Each of these profiles has one inflexion point. For increasing values of 
a these profiles become steeper, and Carton & McWilliams found through normal- 
modes analysis (numerically) that for a-values smaller than 1.9 the vortices are 
linearly stable, whereas for larger values the vortices are unstable. 

Gent & McWilliams (1986) solved the normal-modes equations numerically for 
several different vorticity profiles with an inflexion point and some of their results are 
summarized in table 1. The vorticity profiles are shown in the second from the left 
column and the asymptotic behaviour in the rightmost column ; the latter indicates 
the steepness of the profile. All the profiles have maximum vorticity at the centre and 
a single negative minimum, which corresponds to the single inflexion point of the 
velocity profile, but only the very steep profile with exponential decay of vorticity 
is linearly unstable. All the above-mentioned model vortices are isolated and serve 
as models for typical oceanic vortices. Such isolated vortices will be the main topic 
of the present paper. 

These observations raise the question of how to discern between the unstable and 
stable cases among the vortices that satisfy Rayleigh’s criterion for instability. It is 
interesting to note that the popular Arnol’d (1966) method fails to discern between 
the cases shown in table 1 (see Appendix A). We have therefore developed a purely 
Lagrangian method to overcome the problem. The method is, as is Amol’d’s, 
essentially an ‘energy method’ aimed at  proving Liapunov stability with the aid of 
the conserved quantities of the equations of motion. As a first step to investigating 
nonlinear stability, i.e. stability to finite perturbations, we formulate in the present 
paper criteria for formal stability. A stationary flow is called formally stable (see 
Holm et al. 1985) if there is a conserved quantity such that the first variation of this 
quantity (i.e. the lowest-order change due to arbitrary infinitesimal perturbations) is 
zero whereas the second variation is positive or negative definite. Formal stability 
implies linear stability because the second variation of this conserved quantity is 
invariant in the linearized dynamics. In finite-dimensional systems formal stability 
implies nonlinear stability whereas in infinite dimensions it is a necessary prerequisite 
for nonlinear stability. 

The object of the present paper is to derive criteria for formal stability for planar, 
circular vortices in an unbounded ideal fluid. For this we derive expressions for the 
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second variations of energy and angular momentum under vorticity-preserving 
perturbations. We do not specify local perturbations on the field of interest, say the 
vorticity, as a function of the spatial coordinates but instead investigate the changes 
in energy and angular momentum due to prescribed displacements of individual fluid 
elements. This makes the mathematics more complicated than the Eulerian approach 
of Arnol’d but this appears to be necessary fer isolated vortices. With such a 
Lagrangian approach, Dritschel(l988) has been able to prove the nonlinear stability 
of a vortex patch and of vortices with monotonically decreasing vorticity. For such 
vortices only angular momentum and area conservation need be considered. We have 
found that for isolated vortices and other vortices with non-monotonically decreasing 
vorticity (formal and linear), stability can only be proven if kinetic energy is added 
to the analysis. The calculation bf the variations of energy due to Lagrangian 
displacements of vorticity contours is much harder than for angular momentum, but 
this is an important novel ingredient of the present paper. 

It can be shown (see $2.1), that the first variations of energy and angular 
momentum vanish for circular vortices. If the second-order variations of some linear 
combination of the energy and angular moEentum are sign definite, then we have 
formal stability. The second variations are the lowest-order terms of a Taylor series 
expansion around a stationary state for arbitrary perturbations ; therefore, if formal 
stability can be proven, there is reason to hope for stability to finite-amplitude 
perturbations. a 

An overview of the contents of this paper is the following. Arnol’d (1965) showed 
that any stationary flow (with arbitrary vorticity) provides an extremum in energy 
with respect to isocirculational variations (i.e. divergenceless variations that leave 
the circulation along all material curves unchanged). For a vortex with constant 
vorticity in a single bounded domain the isocirculational variations are simply all 
area-preserving variations. This is also true for vortices with multiple regions of 
constant vorticity ; for such vortices the isocirculational variations are those 
perturbations on the closed curves bounding the regions that leave the area of each 
region unchanged. As a special cae of Arnol’d’s result we verify in $2.1 that any 
stationary flow with constant vorticity in a single closed domain on R2 has extremal 
energy with respect to area-preserving variatiqns, (i.e. the first variation in energy is 
zero for such variations). 

We proceed in $2.1 with establishing the fact that only the circular vortex patch 
provides an extremum in angular momentum. Definiteness of the second variation of 
the angular momentum therefore implies the formal stability of the circular patch. 
We show in $2.2 that the circular vortex patch locally minimizes angular momentum 
and in $2.3 that it locally maximizes energy. Both results prove the formal stability 
of the circular patch. 

In  $3 we derive the expressions for the second variations of energy and angular 
momentum under area-preserving variations for circular vortices consisting of n 
nested concentric rings of piecewise-constant vorticity. These results form the basis 
for further research into formal stability properties of such vortices. To illustrate 
their use we focus attention in $4 on the simplest possible model of an isolated vortex 
which consists of n = 2 rings. In  $4.1 we show that the linear stability regimes for this 
model can be uncovered by considering the sign of the second variation of energy on 
a manifold on which the second variation of angular momentum vanishes. In $4.2 we 
show how to prove formal stability with the aiQ of the second variations; in 
particular we show that the linear stability regime of the above-mentioned model 
vortex coincides with the formal stability regime. 

9 FLM 242 
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Finally, in $5 we point out further possible generalizations of the formalism to the 
case of vortices with continuous vorticity and discuss the possibility of extending the 
analysis to higher order. 

2. Single vortex patches 
In this section we consider a flow that has constant vorticity q in a simply 

connected domain with boundary r, outside of which the flow is irrotational (a 
vortex 'patch'). Let the boundary of the vortex patch on R2 be given as the closed 
curve r. The area A ( r )  of a domain 9 enclosed by is determined as follows (see 
figure 1). Consider a position vector r on R2 (i.e. r = (z,y) with 5 and y Cartesian 
coordinates). The (oriented) area swept out by a small increment dr is ir A dr. Now 
let r be parametrized on R2 according to 

with s,(e,) = s,(02) and ~ ~ ( 8 , )  = sV(B2). The area A of $9 is then 

J 4 

where s = isz+&,. A dot over a dependent variable denotes differentiation with 
respect to 0 here and { i , j ,  k} are three unit vectors spanning a positively oriented 
Cartesian coordinate system in R3. 

A well-known result from fluid mechanics is that for an ideal incompressible fluid, 
the area enclosed by r is a constant of motion. From the equations of motion it can 
further be deduced that kinetic energy E ,  angular momentum L and linear impulse 
P are also invariants. The relevant invariant parts of the kinetic energy, angular 
momentum and linear impulse that depend on the vorticity distribution q@, y) are 
given by the following integrals (Batchelor 1967) : 

where the stream function $ is related to the vorticity distribution according to 
. r r  

@(r)  = -A J J q(r') log It- r'I dz' dy'. 
2n 9 

With this definition q and @ are related according to q = -V2$. Since the domain is 
only determined by r, we also write E = E ( T ) ,  L = L(T) and P = P(T). 

We wish to determine the changes in the conserved quantities if the boundary of 
the vortex patch is slightly perturbed. The magnitude of the perturbation is 
measured by a non-dimensional small parameter 8 and the variations are ordered in 
different powers of 8. The O(s) change is called the first variation, the 0 ( e 2 )  change 
the second variation, etc. It is of interest sometimes to determine the changes in one 
of the invariants while keeping another one fixed. In particular we are interested in 
the first and second variations under area-preserving perturbations. 
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?F 
FIQURE 1.  Diagram showing a closed curve r parametrized with a vector s(0), where 0 is a 
coordinate running along the curve r. The oriented area d+4 swept out by a small increment 
ds = i d 0  is equal to 4s h ds. 

It is tempting to describe the perturbation as follows. Let r be changed to r+ sW 
according to the parametrization 

r+ e a r :  (2, y} = {8,(8) +eu,(8), 8,(4 + E U , ( W ,  8lS [el, 4 1 ,  
where e is an arbitrary constant and u,(8) and u,(8) are arbitrary functions of 6 which 
are independent of E ('weak variations'). Periodicity in B and certain continuity 
requirements are assumed to be fulfilled here. Special care needs to be taken if one 
wants area to be conserved. For instance, consider a circle of radius 1.  The boundary 
is perturbed to r (8)  = 1 +e&r(8) (we have polar coordinates ( r ,  8) in mind here). The 
change in area is 

e l  &(8) do+$? Jr Sr(8)z do. 

So although clearly at O ( e )  area conservation can be satisfied, it cannot a t  O ( 2 ) .  To 
overcome this problem we need to introduce a more general form of perturbation. In 
order to satisfy area conservation a t  all orders s is changed to s + eul +Wu, + O(e3),  
with luil an O( 1) function, independent of E .  Substitution shows that the area change 
is 

AA = A ( r + w ) - A ( r )  

= ek. c"" u1 A S d8 ++9k. {u, A zjl + u, A S} d8 + 0 ( e 3 ) .  (7) 
J 0, J 0, 

For given u1 we can always find a u, such that at O ( 2 )  area is conserved (and by an 
appropriate choice of the ui at any order area can be conserved). 

An example may clarify this. Take for r a circle of radius 1. Perturb r to (in polar 
coordinates) : 

In this case the parameter 8 is just the polar angle, running from 0 to 27t. The change 
in area is then 

T+W: r(8) = 1 + ~ 8 r ~ ( 8 ) + & ~ & , ( 8 ) + . . . .  (8) 
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so area is conserved a t  all orders by taking 
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r 6rl(6) d6 = 0, r 6rr,(6) d6 = - 6r:(6) d6, etc. 

We introduce the following notation : 

A (r+ w) = A ,  + ~4 , + + . . . , 

where 

and A ,  = A ( T ) .  With (7) we get 

A ,  = L:dA,(O), dA,(6) = k.u, A Sd6, (9) 

A ,  = L:d4,(6), dA,(O) ={k~u,Au,+k~u2AS}d6.  (10) 

Below, the case where s describes a circle will be of particular interest. In that case 
one has u,.s = k.{u,  A S}. Furthermore, it  is customary to represent a perturbation 
to the circle as the angle-dependent departure from circular symmetry, i.e. by giving 
the perturbed boundary as (see (8)) 

r(6) = ro+e6r(8)+O(e2) .  (11) 

(12) 

One way of relating 6r to a u, field is by simply taking 

ul,,(0) = &(e) cos8, u,, ,(6) = &(O)  sin 6, 

which amounts to choosing u, parallel to s. With this representation we find 

u1.s(8) = ro6r(6)cos26+ro6r(6)sin20 = roar(@.  

#(6) = u,.s(~) = ro6r(6). 

(13) 

It will be convenient to simplify the notation further, and we define 

(14) 

dAl(6) = #(6)d6. (15) 

In  the case that r is a circle we thus have for dA, (as given by (9)) : 

Referring to (3)-(6) we see that in order to determine the different variations, we 
need to know how integrals of type 

W )  = J J j ( z ,  y) dzdy 

change when the boundary r of the domain 9 is perturbed. With Green’s theorem 
we find (see Appendix B): 

2.3 
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where the dA, are given by (9) and (10). The higher-order variations will not be 
needed in this paper. Again, if s is a circle, (14) and (15) apply, and with (12) we have 
in that case 

We write 

$ = $ o + ~ $ l + ~ z $ z +  ..., E = E , + C E ~ + & ~ E , + . . .  

L = L0+€L,+&ZLz+ ..., P =  p , + € : P , + $ Z p , +  ..., 

change due to a 
Thus the first 

where the subscript 0 denotes the unperturbed basis state, the subscript 1 the O(E)  
slight perturbation of the boundary, defined by (16), and so on. 
and second variations of the stream function are 

where . a  . a  
ax ay 

v' = Z y + J y .  

The expression in (20) is understood to be evaluated at r' = s(0). The first two 
angular momentum variations are 

(22) 

The energy functional is slightly more complicated. When the boundary is changed, 
the change in energy is 

By expanding the integrals in (23) the following expressions are derived for the first 
two variations of the energy: 
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The variations of the x-component of the linear impulse are 

with similar expressions for the variations of P,. Here u,, 1/ denotes the y-component 
of the vector ul. 

2.1. Conditional extrema for single vortex patches 
Let us assume that the flow is stationary in some (possibly translating) reference 
frame. Then according to hnol’d ( 1965) under area-preserving variations (iso- 
circulational variations) the first variation of the energy vanishes. This is easily 
verified as follows. Necessarily we have that the boundary r is a streamline, so the 
stream function is constant on r, i.e. 

lCro(r) = constant. (28) 

With this assumption the first part of the first variation of the energy, as given by 
(24), is seen to be equal to q1Cro(r)A1, where A ,  is the O(E)  area change given by (9). 
But, by substitution of (19) in (24) and interchanging the order of integration, it is 
found that the second part of (24) is also equal to q1CrO(r)Al and we therefore have 
the following result : 

This implies that when the variations are area-preserving (i.e. A ,  = A ,  = 0 ) ,  the 
energy does not change a t  lowest order. So, any stationary flow consisting of a single 
constant-vorticity patch on R2 has an extremum in energy with respect to area- 
preserving variations. 

A particular flow is singled out, however, if angular momentum is added as a 
constraint. To show this we construct a functional F 

F ( r )  = L ( r ) + h q A ( r ) + & E ( T ) ,  (30) 

where h and p are Lagrange multipliers (constants). Under which circumstances does 
the first variation vanish, i.e. 

= F, = 0‘2 : ILO 

Clearly we have F, = L,+hqA1 +&El, which by substitution of (21) and (29) is equal 
to 

Since dAl(0) is arbitrary (through the perturbative vector field u,(O)), we find the 
following Euler equation (du Bois Reymond’s lemma ; see Ewing 1985) : 

Is12 = -h-p@(T). (32) 

This solution tells us that r is a circle, which corresponds to a valid stationary 
solution. Without the energy constraint (put p = 0) we also get this result. The 
circular vortex patch yields an extremum in angular momentum for fixed vortex 
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area. For fixed area the energy is invariant at  lowest-order and it does qot therefore 
add any true constraints (only if the basic state is stationary and only in the first 
variation). 

Consider now the additional constraint of linear impulse. We need not use both Px 
and Py because by a simple coordinate change (a rotation) one of the two can be made 
zero. We take P, and construct the functional 

P(r) = L(T)+hq~(T)+~~(T)+olP,(T). (33) 
The Euler equation is (use (26)) 

or 

(s;+S;)+h+y$(r)+asy = 0, 

s:+(sy++x)2 = -h-y$(r )++2.  (34) 

This corresponds to a circle with its centre at  {x,y} = (0, -&}. Thus the additional 
constraint of linear impulse invariance only appears as a shift of origin. 

2.2. Angular momentum 
The circular vortex patch will be the object of further study here. We begin with the 
second variation of the angular momentum, i.e. L, as given by (22). Area conservation 
at O(e2) implies 

L;d4,(8) = 07 

and, since (sI2 = constant for the circular vortex patch, the second part of the integral 
in (22) is zero. 

By substitution of (9) and noting that if s(0) describes a circle (15) applies, with 6 
defined by (14), the second variation is 

L2 = 2q[~(ul-s12d6' = 2q g52d8. r (35) 

Because this expression is positive definite for any perturbative vector field u,, we 
conclude that the circular vortex locally minimizes angular momentum (for positive 
q )  and is therefore formally stable. The stronger nonlinear stability of the circular 
vortex patch has been proved by Dritschel (1988) also by essentially using the 
angular momentum invariant and the area constraint. 

2.3. Energy 
We can also show that the circular vortex patch locally maximizes energy. Since we 
have already shown that the patch is formally stable, this additional information is 
not needed. However, for the more complicated cases of multiple vorticities, to be 
discussed below, the second variation of energy needs to be determined. This involves 
a lengthy calculation along similar lines as for a single patch and to show how it is 
done we discuss in detail the simpler case of a single patch here and do not go into 
details when discussing the more complicated case of several patches. 

To start we note that in (25) the integral ss, $, dx dy is equal to the sum of the first 
two integrals appearing in (25). This follows by substitution of (20) and taking the s do integral outside the area integral. Moreover, if the circular boundary is denoted 
in polar coordinates ( r ,  8 )  by r = ro = constant, we have 
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where v(r = ro) is the tangential velocity at  the boundary of the vortex patch. By 
substitution of (36) and (19) in (25), and using (15) and (14), we obtain the following 
expression for the second variation of the energy : 

-s (B ' )  I $(V) $(8)  d8'de. (37) 

dA, = 0), the second Because of the imposed second-order area conservation (A,  = 
contribution to this expression is zero. 

The third term in (37) contains a linear integral operator 9 defined by 

where $ is defined by (14). This transform contains a symmetric Fredholm kernel of 
convolution type for which the eigenvalues are real and negative, and with 
eigenfunctions cosnd and sinno (with nEN+). To see this we note that in complex 
notation the circle is represented by s(6) = roeie. Further we note that 

log Ir, eie - ro eiyl = log lrol + log 11 - ei(O'-@I. 

By writing 8 = B'-8 and introducing the notation $,(8) = cine, we get 

log 11 - eiel einB eine d8 

= A n  $n(OL 
where the eigenvalues are 

We have used here the imposed O ( E )  area conservation 

By expanding the logarithmic kernel 

we get 

Since the trigonometric functions are complete in L2[0, 2x1 it is necessary to restrict 
the class of perturbations to this real Hilbert space, i.e. the perturbation Sr has to be 
such that 

rlSr(B)12d8 -= 00. 

We then can develop Sr in a Fourier series and calculate the inner products appearing 
in (37). This does not restrict the class of allowed perturbations we were considering 
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so far. First of all it must be remembered that a perturbation should not break the 
circle, which implies that the displacement Sr has to be continuous in 8. Moreover, 
the weak variations have at most an 0(1) amplitude so they are certainly square- 
integrable. The introduction of the L2-space does therefore not restrict the original 
class of weak variations to a smaller set. 

At this point we need the Fourier series decomposition for Sr, i.e. 

m 
6r = ak cos k8 + bk sin k8, 

k-1 

where in view of the constraint of area conservation no k = 0 component has been 
allowed (an a,, b, 4 0 corresponds to an expansion or contraction of the circle which 
violates area conservation at O(E) ) .  By substitution in (37) we obtain 

(43) 
where we have used v(ro) = #yo. 

It is clear that E, is negative definite if we exclude wavenumber-1 perturbations. 
Such a perturbation corresponds to an overall displacement of the vortex, and as 
expected this does not change the energy. This proves that the circular vortex 
provides a local maximum in energy for all (infinitesimal) square-integrable 
perturbations modulo translations. 

3. Multiple vortex patches 
We consider two closed curves 4 and 4, with 4 enclosing 4. The area enclosed 

by the inner curve 4 is called B1 and has constant vorticity ql .  The area between 4 
and & is denoted by 9, and has constant vorticity q,. Furthermore, the flow exterior 
to 4 is irrotational. In  vector notation the curve 4 is represented by the 
parametrized vector sl(8) and 4 by ~ ~ ( 8 ) .  

We now have for the stream function 

The angular momentum is 

and the energy E = qlJJ$r)dzdY+g,j( Il.(r)&dy, 
9 2  

with $ as given by (44). 
The bounding curves are now perturbed to 

~ , - + ~ , + E U ~ , ~ + ~ ~ U , , , + O ( E ~ ) .  

We write for the first- and second-order area variations 

dAi, ,(8) = k-u,,, Aside, 

dA,, ,(8) = {k-u,, A ti, + k. u ~ ,  A S,} do. 

(45) 

(46) 

(47) 
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The first index ( i )  denotes the curve and the second index the order of the variation. 
I n  the special case that the st describe circles we have the identity 

k - U i , l A S i  = u ~ , ~ - s ~ ,  

and we define $6 = Ut, l ‘S i .  (50) 

As was pointed out in $2, q5,(8) can be identified with d,6ri(8) where d,  is the radius 
of the circle and S ~ T ,  the O ( E )  Lagrangian displacement. I n  the special case of circles 
we further have 

Mi, 1(4 = do. (51) 

With this notation we find for the first and second variations of the stream 
function 

and for the variations of the angular momentum 

3.  I .  Angular momentum 
Before we investigate the energy variations, we can already establish some results by 
considering just the area and angular momentum functionals. Consider the 
variational problem with which we search for a conditional extremum in angular 
momentum for given areas of constant vorticity. We construct the functional 

P = L+hA(T,)+pA(T,),  (56) 

where A(&) denotes the area enclosed by curve 4. 
We get for the first variation of the functional F 

Because dA,, , is arbitrary (through the vector fields ui, ,), we find the following two 
Euler equations : 

(!I1-Q2)IS1I2+h = 0, (58) 

Q Z l S 2 I 2 + ~  = 0, (59) 

which show that for an extremum in angular momentum the vorticity distribution 
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consists of a circular core of constant vorticity surrounded by a ring of the other 
vorticity (concentric). This clearly constitutes a stationary flow. This will be the 
basic vortex to be studied in this section. 

Because both boundaries are circles, we can, as in the previous section, write for 
the second variation 

L, = 2(q,-q,) s“ $; d e + 2 q 2 r  4; de, 

1% ,(el = 0. 

(60) 
01 81 

where we have used the constraint of second-order area conservation, i.e. 

Definitions (50) and (51) have been invoked here. This expression proves the formal 
stability of a vortex with 0 < qz < q1 and q1 < qz < 0. This is the small-amplitude 
form of the nonlinear stability result of Dritschel (1988). 

3.2. Energy 

Other stability regimes can be uncovered with the use of the second variation of 
energy. The basic state to be investigated is a circular vortex with a circular core of 
constant vorticity q1 (region g1) surrounded by a ring of constant vorticity q2 (region 
9,). As the bounding circles are slightly perturbed, the change in energy is 

where A$ = qhl +&z$z + . . . . By expanding the integrals we get 

(63) 

By substitution of (52) in (62) and interchanging the order of integration, we find 
that the sum of the first two integrals in (62) is equal to the sum of the last two 
integrals. Since the bounding curves are streamlines, we obtain for the first variation 
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For area-preserving perturbations we thus have in this case too that the fist 
variation of the energy is zero if the basic state is a stationary flow. For this we need 
not assume that the vortex is circular. 

The second variation can be simplified by the following observations. First we note 
that because the second-order area change has to be zero and the stream function is 
constant on the bounding curves, the integrals s dA,, , and s $lo dA,, in (63) are 
zero. Moreover, by substitution of the expression for $2 (i.e. (53)) and interchanging 
the order of integration, the sum of the last two integrals appearing in (63) is found 
to be equal to the sum of the first and the third integral. We further have 

where vg is the tangential velocity of the circular vortex at the indicated radii and dl 
is defined by (50). 

By using (51), we can reduce the second variation to the following form: 

For the last two integrals appearing in (65) we find after substitution of (52) the 
following expressions : 

where 

We introduced some Hilbert-space shorthand notation here. The inner product on 
L2[0,2x]  is 

while the norm I( . . . ( 1  in L2 is defined by 

llf ll = (f,f Y. 
By writing 

with 9 the same operator as in the single vortex patch case (see (38)), we have 

9 . t  di(@ = 9$,(@ 

because 
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in view of the area conservation constraint. The operators 2,,, thus have 
eigenfunctions cos n8 and sin n8 with eigenvalues A, = - l / n .  For i + j we have 

where A = d i / d j .  For d j  > d,  the logarithm can, as in 52.3, be developed in a 
convergent series and it is easily seen that the eigenfunctions of this operator are the 
trigonometric functions with eigenvalues 

A, = - An/n.  (70) 

If d j  < d ,  one divides by d ,  and proceeding as before it is found that the trigonometric 
functions are again the eigenfunctions with eigenvalues A, with A = d,/d, .  Generally 
we have that the eigenvalues of 2t,3 are 

A" 
n (71) A, ( i , j )  = -3 ( n  = 1,2, ...), 

with 

and eigenfunctions cos n8 and sin n8. 
Putting everything together, we have for the second variation in energy 

- ~ a l - Q 2 ~ 2 ~ ~ l , , 4 1 ~ 4 l ~ - ~ ~ ~ ~ 2 , , 4 , , # 2 ~ - - 2 q 2 ~ ~ l - ~ 2 ~ ~ ~ l , , ~ l ~  4 2 ) .  (73) 

Note that if we put q2 = 0 the result of 52.3 is recovered as well as when we put 
Qz = Q1. 

3.3. Generalization to a circular vortex with n rings 
Having established a working knowledge of how to calculate the different variations 
of energy and angular momentum for the circular vortex with two regions of different 
constant vorticity we can easily generalize to the case of arbitrary many nested 
circular regions. With an elementary calculation it can be verified that all such 
circular vortices provide an extremum in energy and angular momentum under area- 
preserving variations. The second variations of these quantities thus can again be 
used to establish formal stability for circular vortices with piecewise-continuous 
vorticity . 

It is not hard to verify that for the general case of n regions with vorticities 
q, (i = 1, . . . , n )  the vortex consisting of n concentric rings with the respective 
vorticities qi extremizes angular momentum for given vorticity areas. Moreover, the 
second variation of such a vortex is (with i = 1 corresponding to the circular core, 
and counting the rings in increasing order outwards) 

Again, the #5 are equal to d,6r5(8), where Ear, is the O ( E )  Lagrangian displacement 
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of fluid elements lying on circles dj = constant. L, can be cast in the following concise 
form : 

n 

j=1 
L, = -2 c A!7jll4jIl2, (75) 

where ‘qj = qj+l-qj, (76) 
Equation (74) proves the formal stability of a vortex with 0 < qn < qnP1 < . . . q2 < q1 
(i.e. all Aq < 0 ) ,  or q1 < q2 < ... < qn-l < qn < 0 (i.e. all Aq > 0). As pointed out 
before, this is the small-amplitude form of the nonlinear stability result found by 
Dritschel (1988). 

The second variation of the energy for the general case of n vorticities is 
n 

E,  = - 5 2Aqi Jut, 1 ‘V$o(Si) 4i(@ do- C 2Aqt J$l(Si) 4i(’9) de, (77) 
i-1 L-1 

where 

and 

By substitution we find the following expression 

where Yi,, is the operator defined by (68). 

4. Linear and formal stability of vortices 
With the expressions for the second variations of energy and angular momentum, 

linear and formal stability regimes can be uncovered in the following manner. It can 
be shown that the linearized dynamics conserves E, and L, (see Appendix C, or for 
a generalization Holm et al. 1985). Consider the evolution of a single decaying or 
growing normal mode. Since both E, and L, are proportional to the normal mode’s 
amplitude squared, they must both vanish identically for such modes. Thus a 
sufficient condition for linear stability is that for all perturbations with L, = 0, E, is 
sign definite, or vice versa. 

Stability to particular wavenumber perturbations can be deduced by restricting 
the analysis to a single harmonic component and replacing the norm of Yi,j by AL,*/m 
with m the particular wavenumber. In general, the mathematical structure of the 
problem is such that we have to determine the sign of a quadratic form (&,Ear) 
along a manifold (Sr, LSr) = 0, where Sr is an n-dimensional vector and E and L are 
TZ x n matrices. 

Formal stability is investigated by considering the quadratic form E, +pL2,  where 
p is an arbitrary constant. Formal stability follows if a p can be found such that this 
form is sign definite. As we show below the procedure amounts to determining 
eigenvalues h(p)  of n x TZ matrices. Formal stability is proven if there is a ,u such that 
all h are either positive or negative. 
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FIGURE 2. Diagram of the isolated model vortex investigated by Flierl (1988). In (a) the velocity 
profile is shown and in ( b )  the corresponding vorticity. Non-dimensionally the profiles have 
maximum velocity at T = 1 and zero velocity beyond T = d. 

4.1. Example: linear stability of an isolated vortex with n = 2 

We will use the second variations of energy and angular momentum to establish the 
linear stability regimes of an isolated vortex consisting of two concentric rings of 
oppositely signed vorticity, i.e. a vortex with q1 > 0 and q2 < 0 such that v,(d2) = 0. 
This vortex has zero net integrated vorticity (vanishing circulation) and serves as a 
simple model for more general isolated vortices which satisfy Rayleigh's inflexion- 
point criterion (Drazin & Reid 1981), i.e. satisfy the necessary condition for 
instability, and are therefore possibly unstable. This is the isolated model vortex 
depicted in figure 2 the linear stability of which was investigated with normal-modes 
analysis by Flierl (1988). 

For the given basic state we have 

v,(r) = ; sq(s) ds = &, r 's (0 < r < d l ) ,  

1 q l d ;  r 2 - d t  
2 r  

= -- + & 2 7  ( d ,  < r < d , ) .  

The isolated vortex has vanishing azimuthal velocity on the outer boundary, and 
with (82) this implies 

with A = d, /d2 .  Without loss of generality we can take q, = 1 and d ,  = 1 and we will 
throughout this section use the following relation : 

q1 A2+q2( 1 - A z )  = 0, (83) 

1 

or 

which follow by using (83). By substitution of these relations in (75) and (80) we have 
for L, and E ,  

L ,  = ( l + a )  11$1112-p.11$2112> (85) 

E2 = - (1  +d l l$1Il2-  (1 +a)"%, 1 4 1 9  $1) - q 2 ( 3 2 , 2  $29 $2)-2q(l  +d ( ~ 1 . 2  $1, $2). 
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FIQURE 3. Graphs showing the structure of the possibly unstable modes of the isolated vortex 
model of figure 2 as determined by a consideration of the second-order variations of energy and 
angular momentum. I n  (a) and (b) the structure is shown for wavenumber-2 perturbations for (a) 
q e + and (b) q = 4. In  (c) and (d )  the structure is shown for wavenumber-3 perturbations with 
q = 1/.\/2 in (c) and q = 1 in (d ) .  Further details are given in the text. 

We will now consider the sign of these quantities with respect to a given single 
harmonic perturbation. 

As we saw in $3, if the two bounding curves s1 and s, are circles of radii d, and d,, 
respectively, then 

with eSri(t) the O(E)  Lagangian displacement of the boundaries. We introduce the 
Fourier transforms for the perturbed boundaries : 

#i = u,.si(e) = d,  wo), 

W 

#i = d, &,(0) = C ai, cos kB + bi3 sin k0. 
k-1 

If a perturbation consists of a single harmonic component, then we take 

$,(0) = d, dr , (d)  = rl cos mB, (87) 

(88) 

where rl, r2 are positive constants. The term me, represents the phase difference 
between the perturbations on the inner and outer circle. In  figure 3 examples are 
shown of such phase shifts. So, the Fourier components are in this case 

a 1 . m  = rl, b l ,m = 0, 

$,(0) = d26r2(0)  = r,cos(mB+me,), 

= r2{ cos me, cos m0 - sin me, sin me}, 

a2, = r2 cos me,, b2? = - r2 sin me, 
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(with all ai,n and bi,n zero for n =I= m). For all the norms we have 

1 1 $ i 1 1 2  = nr:. 
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With these preliminaries we now write for the second variation of the energy 

where, with (84), 

We have added an index m to E ,  to emphasize that this expression gives the second- 
order change in energy due to a single harmonic perturbation with wavenumber m. 

Let us first consider the case of m = 1.  A single m = 1 perturbation merely shifts 
its position. For two concentric circles simultaneous m = 1 perturbations can shift 
the inner circle to a position eccentric to the enclosing outer circle unless the phase 
difference is zero (i.e. for 8, = 0). We need to investigate the sign of E ,  along a 
'direction' in which L, = 0. Using (85) to eliminate the occurrence of II$J in E,, we 
have for m = 1 

E2,m-1 = 2q211~,112{1-~~~8&* 

We see that E2, m-l = 0 whenever the phase difference is zero. This was to be expected 
since in this case the vortex is merely displaced and this certainly does not change 
the energy. Whenever the phase difference is not zero, the second variation is 
positive. So, modulo translations of the entire vortex, it  can be concluded that the 
isolated vortex is linearly stable with respect to m = 1 perturbations. This is in 
agreement with the observation of Stern (1987) that a configuration with one of the 
circles displaced with respect to the other constitutes a propagating vortex which in 
a co-moving frame is stationary (this is sometimes viewed as being an unstable 
degenerate mode with a linear growth rate; see Flierl 1988). 

For the m = 2 mode we get 

In contrast to the case of m = 1, E,  now depends on both q and the phase difference. 
As the phase difference is varied, E,, "-, varies between 

If the upper and lower bound are of the same sign, then the vortex is linearly stable 
to wavenumber-2 perturbations. Note that q can be given any positive value. For 
large q-values the lower bound tends to -& whereas the upper bound tends to 2q. So 
E,* "=, is possibly of fixed sign only for small q. We see that for very small q the upper 
and lower bounds are both negative. The value of q for which the upper bound 
becomes zero marks a critical value below which the vortex is linearly stable with 
respect to  wavenumber-2 perturbations. To determine this critical value we solve for 
q by equating the upper bound to zero, to find, with a few simple algebraic 
manipulations, that qcrit = g. So, if q < qcrit (by substitution d > 2),  the vortex is 
linearly stable. This critical value was previously found by Flierl (1988) by means of 
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a normal-modes analysis of the linearized equations of motion. He showed that for 
q > qcrit the normal modes grow exponentially in time whereas for q < qcrit they are 
neutrally stable. By a consideration of the variations of the conserved quantities of 
the system, we thus find the same stable regime. The stable regime can be interpreted 
as being such that all small m = 2 perturbations lead to an increase in energy. 

With (90) we see that the phase difference for a possible unstable mode is 
determined by the relation 

This shows that for values very close to the critical value q = $ the phase difference 
approaches in whereas for instance for q = t the phase difference of the unstable 
mode is in (see figure 3a, b ) .  For very large q the phase difference approaches 
0, = 7c. Using (85) we find that 

As a final example consider the case of m = 3.  For E,,,=, we find 

As in the previous example, only for sufficiently small q is E,  single-signed (negative 
definite). The critical value is easily determined to be qcrit = 1 / 4 2 .  Therefore, for 
q < 1 / 4 2 ( d  > ( 1  + z/2);)  the isolated vortex is linearly stable. This, again, is 
in agreement with Flied's results. The phase difference for the unstable modes with 
q > 1 / 4 2  is determined by the following equation : 

cos 30, = (q2- l ) /q2.  

So, near the critical value the phase difference is close to 0, = in, whereas for q = 1 
it is 0, = in (see figure 3c,  d ) .  For very large q the phase difference gets close to in. 

In a similar vein the case of q2 > q1 > 0 can be investigated. An inspection of the 
signs of E,  and L ,  leads to the discovery of the same stability boundaries as found 
by Flier1 (1988) with his normal-modes analysis of the linearized equations of motion. 
Also, the linear stability of the annular vortex, i.e. the case q1 = O , q ,  + 0, is easily 
investigated with the above-derived expressions for the second variations. The 
stability regimes previously discovered by Michalke & Timme (1967) are again 
found. So, remarkably, with the expressions for the second variations we can find not 
only the linear stability regimes but also the structure of unstable normal modes. 
Growth or decay rates are not derivable from these considerations. 

4.2.  Example: formal stability of an isolated vortex with n = 2 
In order to investigate formal stability, which is stronger than linear stability (Holm 
et al. 1985), we consider the quadratic form E,+&L,, where p is an arbitrary scalar 
(we have added a factor t for convenience). In vector notation, this quadratic form 
can be written as (Sr, (E++f )  Sr). If we can find a ,u for which all of the eigenvalues, 
A @ ) ,  of the matrix E+&f are of the same sign then formal stability is proven. 
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It will be convenient to use the spectral form of the second variations, which are, 
with (86), co 

~ 2 = - - 2 n i ; ~ q i (  i -1  m-1 C. a i , m + b i , m ) j  (92) 

1-1 n m Am 

+ 2 n C  C. AqiAqj z ~ ( a i , m a 5 , m + b , , m + b , , m ) .  (93) 
I -1  I -2  m-1 

As an example we consider the special case of the previous section again. We write 

a, , ,=r i , , cos8 , , , ,  bi,m=-ri,msin8i,m ( i =  1,2), 

from which it follows that ui, + bi, = r i ,  and 

a l , m a z , m  +b,,mb2, m = rl ,mr2,  m C O ~  ( 8 2 . m - 8 1 . m )  = emr1, mT2,my 

where em is some number between - 1 and + 1.  We now form the quadratic 
functional E,  +AuL2 which in spectral form is 

Basically this is a sum of quadratic forms each of which is proportional to 

with 
a m  x2 + 2ym xy + P m  y2 ,  

where to calculate y m  we have used (84). Formal stability follows if there is a ,u such 
that for all m the eigenvalues of the matrix 

are both positive or both negative. This is impossible if we include the m = 1 
component because a1 = ( 1  +q)  ( p - q )  and p1 = q(q-p) .  Thus no matter what ,u is 
taken to be, these coefficients differ in sign and the quadratic form is not sign- 
definite. As discussed above, a wavenumber- 1 perturbation leads to a steady 
translational motion of the isolated vortex, i.e. such a perturbation imparts impulse 
to the vortex. The m = 1 modes are the only modes that have non-vanishing impulse. 
They are entirely uncoupled from the higher wavenumber modes in the nonlinear as 
well as in the linear dynamics. This follows from the conservation of impulse ; if the 
initial structure has zero impulse (i.e. no m = 1 component) then none can be 
generated. If we exclude this component we find that for small enough q there is 
always a p which makes the quadratic forms with m 2 2 negative definite. This is 
shown as follows. 

The eigenvalues are 
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A, = $ . ( a m + P , ) f ~ ( ( a m + ~ m ) 2 + 5 t m ) ~ ,  
where % = ( a m  - P m  + 4~ f - ( a m  + P m  )'. 

Both eigenvalues are clearly negative if we can show that 

a m + P m  < 0, 9, < 0, (96a, b) 

Substitution of the above expressions for a,, p,, and y m  shows that for m = 2 we 
need simultaneously 

From (97b) we infer that y > 0 and then from (97a) it follows that 

0 c p < i-qz. (98) 

Formal stability will therefore only be possible for q < 1 / 4 2 .  More generally 
condition (96a) implies 

m-1  m-2  2 
0 < p  <-+- a-,q. m m 

It is easily verified that for larger m this becomes less and less restrictive on y so if 
(98) is satisfied then automatically (96a) is satisfied for all m 2 2 .  

The question now becomes whether in the range given by (98) we can find a y such 
that for all m 2 2 condition (96b) is also satisfied. Substitution provides us with the 
following expression : 

q1+m(l+q)2-m-q3 
+ mZ(i+q) 

= f m , q ( p )  = +-- 9rn 

4q( 1 + q) 
(99) 

The function f,,, is convex in p with a minimum a t  

Pmin = (m- l ) / 2 m .  

In particular for m = 2 this minimum is 

which is zero for q = f and negative only for q < f. For q < f, f m , *  is negative in the 
range 

_-- - < p < -+-(-) 1 1 1 - 3 q i  3 

4 4 1(1-3qy l + q  4 4 l + q  

which is within the range allowed by (98). 
For large m we infer from (99) that the interval for negative f,,, tends to 

0 < ,!A < 1. More detailed inspection of (99) shows that the interval for negative fm+l, 

overlaps that off,,, for any m 2 2 .  We conclude therefore that for any q < ) there 
is always a y such that the quadratic form E,  +$5, is negative definite if we exclude 
perturbations that set the vortex into translational motion (wavenumber- 1 
perturbations). We also conclude that the range of q-values for which the vortex is 
formally stable coincides with the linear stability range (0 < q < )). 

Clearly the method employed here can be extended to different model vortices with 
more regions of different vorticity but typically a computer will be needed to search 
for positive- or negative-definite eigenvalues of the quadratic forms as a function of 
the multiplier p. 



Formal stability of circular vortices 27 1 

5. Discussion 
We have derived new expressions for the second variations of energy and angular 

momentum under area-preserving perturbations for circular vortices with piecewise- 
constant vorticity. With these expressions we can investigate the formal stability of 
vortices with piecewise-constant vorticity. These vortices are models for isolated 
vortices with a continuous vorticity distribution, which cannot be proven stable by 
Arnol’d’s method (1966) (see Appendix A). As an example we have treated the 
isolated-vortex model of Flierl (1988) and we have shown that the linear stability 
regime coincides with the formal stability range. This stability excludes the 
possibility of perturbations which initially change the impulse of the vortex. The fact 
that there are formally stable isolated vortices indicates that it might be possible to 
prove nonlinear stability in certain cases. But, the second variations used to prove 
formal stability are only the quadratic terms of the fully nonlinear expressions. The 
full angular momentum is of fourth order in variations of material displacements. 
The energy, if developed in a Taylor series expansion, contains contributions at  all 
orders. Therefore angular momentum can constrain the energy variations only up to 
fourth order. At higher order the energy variations are unconstrained and usually 
not sign-definite. This suggests that the only form of stability that will possibly 
follow is conditional, that is, stability for finite but small enough perturbations only. 

This is supported by the results of Flierl (1988). He finds for the model that we 
have treated that around the stability limit (i.e. qcrit = g), the instabilities are 
subcritical. This means here that in the unstable region the instability does not 
saturate in a nearby (stable) state. Usually in a standard (one-parameter) subcritical 
bifurcation, one has that on the stable side of the bifurcation point there are nearby 
unstable branches. The stable branch has a stable domain around it, and as long as 
the perturbations are not too large, the system will remain close to the stable state. 

Arnol’d nonlinear stability on the other hand is very strong; it is the analogue of 
the stability of a particle in an infinitely deep convex potential well. The analogue 
for stable isolated vortices must be the stability of a finite-depth potential well. We 
intend to explore this topic further in the future. 

The results can further be generalized to the case of vortices with continuous 
vorticity by considering an ever finer partition of vorticity rings and taking the limit 
n + 00 . Let us first investigate what this implies for the second variation of angular 
momentum. According to (75) we have 

12 

GI = L, = - C 2Aq, d,211Sr1)(2. (100) 
de2 c-o (-1 

Remember that eSri(8) is the radial displacement of fluid elements that lie initially 
on the circle r = d,  = constant. We can also write for the second variation 

with Adi = d6-dt - l .  By taking ever smaller partitions and letting n+ 00 we thus 
obtain the following expression : 

The integration extends over all of the vortex. Wherever jump discontinuities occur 
in the vorticity distribution, locally one replaces the gradient in this expression by 
the jump value. The boundary of the vortex can be at infinity or be at finite radius 
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without the vorticity necessarily being continuous there. The quantity &(r, 0) is the 
O(B)  displacement of a material fluid element on the circle r = constant as a function 
of its azimuthal coordinate on the circle. It is seen that the sign of L, is definite 
whenever the sign of the vorticity gradient is of fixed sign. We thus have established 
the formal stability of a vortex for which aq/ar is of fixed sign for all r .  Moreover, the 
formal stability points out the possibility that the vortex can be proved to be 
nonlinearly stable, and this has indeed recently been accomplished (Dritschel 1988 ; 
Carnevale & Shepherd 1990). 

For the first part of the second variation of the energy as given by (80) we write 

In the limit n+ m this becomes 

The magnitude of the second part can be bounded from above as follows. First we 
note that the norm of the operators 2,,, is max{~~Ya , ,~~}  = At , ,  (if we exclude 
wavenumber- 1 perturbations this has to be replaced by ;Aa, J. So, 

I(2t,,#,,#,)I G ~ a , , l l # a l l  ll#,Il. 
This is a sharp estimate, i.e. there are situations in which the upper bound is actually 
attained. By introducing the notation 

we have 
4; = Aqa #a 

This too is a sharp estimate. The upper bound can in turn be cast in the form 

.. 
(-1 j-1 ta1 a-1 

where d, 2 d, for all j >, i. By substitution we find that this term is equal to 

By taking the limit this becomes equal to 

This establishes the following upper and lower bounds for the second variation of the 
energy : 



Formal stability of circular vortices 273 

Using the sharp upper bound E i ,  we can prove formal stability if there is a ,u such 
that the quadratic form Ei+pL, is negative definite or, vice versa, by using the 
sharp lower bound E;,  if the form E;+p,L, is positive definite. For given vortex 
structure the properties of the integral operators appearing in the expressions for L,  
and E,  need to be investigated. This is left for future work. 

We thank Pedro Ripa for useful comments on the present work. This research has 
been supported in part by National Science Foundation grants OCE 89-11858 and 
ATM 89-14004, by the Office of Naval Research grant N00014-89-5-1155, and by 
ONR/DARPA under the University Research Initiative Program no. N00014-86-K- 
0758. 

Appendix A. Arnol’d’s method for isolated vortices 
Arnol’d’s (1966) method is based on the observation that energy 

E = - (V$)2dxdy 
2 ‘I 

and generalized enstrophy QF = lF(q) dxdy (for arbitrary F) are conserved 
quantities for ideal planar flow. Here $ is the stream function, q vorticity, and F an 
arbitrary function of one variable. For a stationary flow with stream function Y and 
vorticity Q there is a functional relation between vorticity and stream function 
Y = Y(Q) = G ( Q )  where G is some (possibly multivalued) function. We consider $ as 
the basic independent field, with q determined diagnostically from $ according to 
q = -Vz$. An arbitrary non-stationary flow $(x, y;t)  is written as the sum of the 
stationary state Y and a perturbation S$(x, y ; t ) .  Now the quantity H [  Y+ S$] - H [  ‘yl 
with H = E+QF is clearly conserved. If F(q) is chosen such that 

WQ) = G(Q)  = -p’(Q) 

then by partial integration we have 

H [  Y+S@] - H[‘yl = constant = f(VS$)’+F(&+ Sq)-F(Q)--F’(Q) Sqdxdy. I 
In this expression the first part is the perturbative kinetic energy. The last two terms 
are clearly the first two terms of the Taylor series expansion of F(q) around q = &. 
If the second derivative of F is bounded for all Q ,  i.e. - 00 < c < Y(Q) < C < 00, 

then by the mean value theorem, the following estimate results: 

-I(VS$)2+c(Sq)sdxdy 2 < H [ Y + S $ ] - H [ ! P l <  - 2 7 (VS$)2+C(Sq)2dxdy. (A 1) 
1 

If the lower bound c is positive, a norm on the perturbation can be defined by 

and with (A 1) it then follows that 
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The norm of the perturbative field can therefore be made arbitrarily small by 
choosing the initial perturbations small enough. This is a case of nonlinear Liapunov 
stability and is valid for perturbations of arbitrary amplitude (Carnevale & 
Frederiksen 1987 ; McIntyre & Shepherd 1987). Note that c = min { - !P‘(Q)} and 
C = max{- !P‘(Q)}. An expression similar to (A 3) with a norm based entirely on 
disturbance enstrophy can be obtained for either zonally symmetric flows (see 
Shepherd 1987) or circularly symmetric flows (see Carnevale & Shepherd 1990) using 
linear momentum or angular momentum, respectively. 

On the other hand, if C is negative, then Arnol’d showed that normed stability 
follows if the integral 

~(V&h)2+C(&q)2dxdy (A 4) 

is negative definite. 

circularly symmetric vortex one has 
For a circular vortex the tangential velocity is v = -a,.$ and for a stationary 

where V is the tangential velocity of the stationary vortex. Consider the case of an 
isolated vortex in which V is positive everywhere and Q‘(r)  changes sign only once. 
It is impossible to prove Amol’d stability using directly (A 5 )  because c < 0 and 
c>o. 

If we include the angular momentum, which is also a conserved quantity, in the 
above expression for H[!Fj, then the right-hand side of (A 5 )  is replaced by 

where Q is an arbitrary Lagrange multiplier. If the vorticity distribution has two or 
more inflexion points, no Q can be found that makes D(r )  positive or negative 
everywhere and Arnol’d stability cannot be proven. However, if a profile has exactly 
one inflexion point at r = ro then the choice 

Q = - V ( r o ) / r 0  

may yield a D ( r )  which is sign definite. It is easily verified that the families of profiles 
listed in table 1 for instance have negative definite D ( r )  (they correspond to 
streamfunctions Y(r)  = (1 +r2)-” (a = 6, 1,2) and Y(r)  = exp ( -&r2), respectively) 
with this choice of Q. I n  fact all isolated vortices with one inflexion point have 
negative D(r). It may also be noted here that the function Y(Q) has two branches, 
i.e. is multivalued for vortices with an inflexion point. 

Thus only Arnol’d’s second criterion which applies when C is negative is 
appropriate for isolated vortices. However, one can show that, for instance, all of the 
isolated vortices of table 1 fail to  satisfy this criterion in an  unrestricted domain. If 
we consider the integral in equation (A 4), we note that the second term, which is 
negative, can always be made to dominate the integral if the scale of the perturbation 
is made sufficiently small, and the first term, which is positive, will dominate if the 
scale of the perturbations is sufficiently large. Thus the only way to guarantee that 
this integral is negative for all perturbations is to restrict the size of the domain. Thus 
on an infinite plane the second criterion is of no use. However, we could consider, for 
the sake of argument, how small the domain would have to  be for the isolated 
vortices to  be stable by this criterion. For instance, i t  turns out that for the cases 
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shown in table 1, the boundary of the domain would have to be within the inner core 
of vorticity. This can be demonstrated by using a classical inequality relating the 
total energy in a closed domain to the total enstrophy (cf. Benzi, Pierini & Vulpiani 
1982). Actually, the first criterion proves more useful here since it can be used to 
prove nonlinear stability for a boundary placed as far out as the edge of the inner core 
(by the monotonicity of the vorticity profile). We conclude that Amol’d’s method 
cannot even discern between isolated vortices that are known to be linearly stable 
and unstable ones. More general considerations where V ( r )  may change sign lead to 
similar conclusions. 

Appendix B. Calculation of the first and second variations 
In order to calculate the changes at first and second orders of the various integral 

quantities of interest (energy, stream function, linear impulse, angular momentum), 
we have to determine in general how an integral of the form 

changes when the boundary of the domain 9 is perturbed. Here 9 is a simply 
connected domain with a closed curve r as boundary, and f(x, y) is some function. 
Let us write 

/J9f(x,y)dxdy = I(JgtV-Fdxdy = tfrF-ndZ, 

P s 
(B 1) 

F(x, y) = i f(u, Y) d u + j  fk, 4 du, (B 2) where 

and 
s n = A k ,  dl = 131 dd. 
bl 

By substitution we find 

I ( T )  = i k - l : F ( s )  ASdd. 

If r is changed, the integral becomes 

I ( T + W )  = ik-  F ( s + ~ s )  (S+61i)dd, l: 
where 6s = €u1++A4z+.... 

Substituting in this expression the following Taylor-series expansion : 

F(s + 6s) = F(s) + €U1. VF(s) +p{(ul .V)2F(r)  + u,.F(r)} + 0 ( € 3 ) ,  

and subtracting I ( r ) ,  the O(s) and O ( 2 )  changes are found to be given by 

I ( r +  6r) - I ( r )  = sik- {FA til} + { (u, - VF) A S} dd 

+e2+k* {iFAri,}+$(u,.VF) A S}d8+O(e3), (B 5 )  l: 
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where all expressions involving Fare understood to be evaluated at r = s(0). The O ( E )  
change is deduced from this by noting that the integrand of the O ( E )  variation can 
be written as 

d 
dB 

F A  U, + (u, - V F )  A s = - { F A  u,} - (3. V F )  A u, + (u, - V F )  A s 

d 
dB 

= - { F A ~ , } + ( V - F ) ~ , A S ,  

where we have used the identity 

{a-VC}Ab-{b.VC}Aa = {V*C}aAb. 

Because V ' F  = 2f, we find 

= k - l : f ( s ) u ,  Aide, 

where the contribution to the integral by the derivative is zero because of the 
periodicity on the closed curve. 

The 0 ( e 2 )  variation in (B 5 )  can be cast in a more convenient form by rewriting the 
first part containing only u, as 

+ ~ V . ( U , . V F ) ) ~ , A S + ~ ( V . F ) ~ , A P , ,  (B9)  

where we have used (B 7) twice. Since V - F =  2f and V - ( u , - V F )  = 2u,.Vf, the 
integrand of the first part is 

(u, - V j )  u, A S +fu, A P,. 

The second part of the O(2)  variation in (B 5 )  containing u, is of the same form as 
the first variation and we find therefore that 

i d  
2 d6 

{p A a,} + K(u, VF) A i} + = - - { F A  u,} + t (V - F) u, A 9. 

Putting everything together we find that the second variation is 

Appendix C. Conservation of E, and L, 
In this Appendix we show that the linearized dynamics conserve E,  and L,. We will 

only treat the case of the circular vortex consisting of n rings of different vorticities. 
First we note that the convention used in this paper relates the radial velocity wr and 
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azimuthal velocity ve (in polar coordinates ( r ,  8) )  to the stream function $ according 
to 

v =-- 1 a$ a$ 
r a @ >  V e = - z .  

The rate of change of the radial position of an element that has undergone a 
displacement sSr,+O(s2) from the circle r = di = constant, is given by 

a 
d, +car, + O(e2) a8 

- Y(di + d r ,  + O(E,) ,  8, t ) ,  
1 - - a(&, + O ( 2 ) )  

at 

where t denotes time and Y is the stream function, which is developed in powers of 
the small-amplitude parameter 

Y = $bO+qh1 ++€2$,+. . . . 

By expanding all terms in (C 1) we find the following O(e)  equation: 

The first-order correction of the stream function ($,) is calculated according to (79). 
With this we can now easily prove that E,  and L,, as given by (80) and (75), 
respectively, are invariants for the linearized equations of motion. 

Let us first consider the second variation of the energy, which is 

g2 = r o i  x A q i y d i & r F ( 8 , t ) d 8 =  

Here Aqi is defined by (76). The time derivative is 

where we have used the fact that 

which follows by taking the time derivative of (79) and using it in the left-hand side 
of the above equation. Substitution of (C 2) in (C 4) shows that 

a 
dt ' - 0 i a8 

2n d 
-&It - I -zAq,-{$l-ve(d,)6r,}2d8 = 0. 

The time derivative of (75) is 

= - 4 1  TAqid,PGr,-d8, a&, 
dt at 
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which by using (C 2 )  becomes 
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2 dL = - 4 J r  ae diSridO = - 4 J r  
dt i 

By substitution of (79) and partial integration, the time derivative ofL, is cast in the 
following form : 

With some elementary calculations this in turn is found to be equal to 

The ai, and bi, are the Fourier coefficients of the quantities di&, (see (86)). Owing 
to its antisymmetry in { i j }  this expression is clearly zero. This proves the time 
invariance of L,.  
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